# 最大子序和 - Maximum Subarray

【分治】 【动态规划】

``````给定一个整数数组 nums ，找到一个具有最大和的连续子数组（子数组最少包含一个元素），返回其最大和。

``````

### Example:

``````输入: [-2,1,-3,4,-1,2,1,-5,4],

``````

## Solutions

### Solution ( 15ms)

 `````` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 `````` ``````class Solution { public int maxSubArray(int[] nums) { int res = nums[0]; int sum = res; for (int i = 1, length = nums.length; i < length; i++) { if (sum > 0) { sum += nums[i]; } else { sum = nums[i]; } res = Math.max(res, sum); } return res; } } ``````

### Solution ( 7ms)

 `````` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 `````` ``````class Solution { public int maxSubArray(int[] nums) { int maxSum = nums[0]; int curSum = 0; for (int n: nums) { curSum += n; if (curSum > maxSum) { maxSum = curSum; } if (curSum < 0) { curSum = 0; } } return maxSum; } } ``````

### Solution 【分治】【动态规划】(9ms)

 `````` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 `````` ``````class Solution { public int maxSubArray(int[] nums) { if (nums == null || nums.length == 0) { return 0; } int[] dp = new int[nums.length]; dp[0] = nums[0]; int res = dp[0]; for (int i = 1; i < nums.length; i++) { dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]); res = Math.max(dp[i], res); } return res; } } ``````